Risk of Second Primary Tumors and T-cell lymphoma after CAR-T cell therapy

Stephen J. Schuster, M.D.

Professor of Medicine Perelman School of Medicine, University of Pennsylvania

Director, Lymphoma Program & Lymphoma Translational Research Abramson Cancer Center, University *of* Pennsylvania

Disclosures

9th POSTGRADUATE

Disclosures of Prof. Stephen J. Schuster

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
AbbVie						x	
ADC Therapeutics						х	
AstraZeneca			x			х	
BeiGene						х	
BioNTech			x				
BMS						х	
Caribou Bio			x			х	
Genentech/Roche	x					х	
Genmab	X		x			х	
Janssen						х	
Novartis	X		x			x	
Vittoria Bio							x

CAR-T cell = T cell with antigen specificity redirected by a chimeric receptor

Florence,

March 20-21, 2025

9th POSTGRADUATE

CD19-directed CAR-T saves the lives of many lymphoma patients

- Relapsed/refractory large B-cell lymphoma outcomes before CAR-T
 - SCHOLAR-1 study¹: an international multicenter, retrospective study
 - Data from 2001-2014 (N = 636)

9th POSTGRADUATE

- Inclusion: progressive or stable disease (after > 4 cycles of 1st-line and/or 2 cycles of later-line therapy) or relapse < 12 months after ASCT
- * Response rates to next line of therapy: ORR = 26%; CR = 7% rate
- * Median overall survival = 6.3 months ¹Crump M, et al. Blood 2017;130:1800-1808.

 Roughly 1/3 of patients with relapsed or refractory large B-cell lymphomas achieve long-term remissions with commercially available CAR-T products as <u>> 3rd-line therapy</u>

Axicabtagene ciloleucel ¹	Tisagenlecleucel ²	Lisocabtagene maraleucel ³
ZUMA-1 ¹ : axi-cel as ≥ 3rd-line therapy for LBCL N = 101 Median follow-up: 63.1 months Estimated 5-year EFS: 30.3% (95% CI, 21.5-39.6)	JULIET ² : tisa-cel as > 3rd-line therapy for LBCL N = 115 Median follow-up: 40·3 months <u>Estimated 40-month PFS: ~30%</u>	<pre>TRANSCEND³: liso-cel as ≥ 3rd-line therapy LBCL N = 257 Median follow-up: 23.9 months Estimated 24-month PFS: 40.6% (95% Cl, 34.0-47.2)</pre>
100 (8) Tervitis 40 0 0 0 4 8 102 10 0 0 4 8 12 16 20 0 0 4 8 12 16 20 0 0 0 4 8 12 16 20 20 0 0 10 20 0 0 0 0 10 10 10 10 10 10 1	100 90 90 90 90 90 90 90 90 90	$\begin{array}{c} 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$

*The studies summarized above differ in their designs, patient characteristics and follow-up; therefore, direct comparisons are precluded.

¹Neelapu SS, et al. Blood 2023; 141(19):2307-2315; ²Schuster SJ, et al. Lancet Oncol 2021;22(10):1403-1415; ³Abramson J, et al. Blood 2024;143(5):404-416.

CAR-T is now the standard of care for 2nd-line therapy of refractory or relapsed large B-cell lymphomas

9th POSTGRADUATE

On November 28, 2023, FDA announced investigation into T-cell lymphomas after CAR T therapies

FDA U.S. FOOD & DRUG

9th POSTGRADUATE

FDA Investigating Serious Risk of T-cell Malignancy Following BCMA-Directed or CD19-Directed Autologous Chimeric Antigen Receptor (CAR) T cell Immunotherapies

22 cases of T-cell lymphoma occurring post-CART immunotherapies reported. 3/22 were CAR positive.

https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/fda-investigating-serious-risk-t-cell-malignancy-following-bcma-directed-or-cd19-directed-autologous

Infections

(50.9%)

Non-relapse mortality after CAR-T for B-cell lymphoma & multiple myeloma

• Systematic review and meta-analysis using MEDLINE, Embase and CINAHL (Cochrane) for reports of non-relapse mortality after CAR T cell therapy in lymphoma and multiple myeloma up to March 2024 Clinical trial and real-world studies (46 studies; N = 7,604) Non-relapse mortality (6 CAR-T products)

Florence, March 20-21, 2025

UPenn CTL019 (aka tisagenlecleucel): Secondary cancers at 5 years

The NEW ENGLAND JOURNAL of MEDICINE

CORRESPONDENCE VOL. 384 NO. 7 FEB 18, 2021

Five-Year Outcomes for Refractory B-Cell

Lymphomas with CAR T-Cell Therapy

E.A. Chong, M. Ruella, and S.J. Schuster | N Engl J Med 2021;384:673-674

Figure S1: Patient allocation

Table S6: Secondary cancers

All Infused Patients	
	Patients, N (%)
Secondary cancers	6/38 (16)
Non-small cell lung carcinoma ¹	2/38 (5)
Acute myeloid leukemia ²	1/38 (3)
Myelodysplastic syndrome ³	1/38 (3)
Prostate cancer	1/38 (3)
Melanoma	1/38 (3)

Clinical histories for selected patients:

¹Both patients were former smokers with 22 pack-year and 40 pack-year smoking histories.

²79-year-old man with past medical history of follicular lymphoma transformed to high grade B-cell lymphoma in remission after CTL019, who developed acute myeloid leukemia. He had previously received COPP + radiation (remission since 1977, relapsed 15 years later), CHOP, fludarabine, eight cycles of BR, clinical trial of heat shock protein (PU-H17), and three cycles of EPOCH.

³ 68-year-old woman with past medical history of follicular lymphoma transformed to diffuse large B-cell lymphoma in remission after CTL019, who developed myelodysplastic syndrome. She initially received six cycles of CHOP (followed by a four-year remission), then rituximab monotherapy for several relapses. She developed transformed follicular lymphoma and received three cycles of R-ICE (stable disease), CUDC-907 on clinical trial (progressive disease), and lenalidomide/rituximab (mixed response) prior to CTL019.

Secondary primary cancers after CAR-T: the UPenn experience

Study cohort: adult patients (**N = 449**) treated with commercial CAR T for NHL, MM and ALL between January 2018 and November 2023 at the University of Pennsylvania

Characteristics		All cases 449 (100%)	No second cancer 433 (96.4%)	Second cancer 16 (3.6%)	р
Sex	Female	162 (36.1%)	159 (36.7%)	3 (18.8%)	0.142
Age at CART infusion	>65	179 (39.9%)	170 (39.3%)	9 (56.2%)	0.173
Diagnosis	NHL MM ALL	317 (70.6%) 125 (27.8%) 7 (1.6%)	304 (70.2%) 122 (28.2%) 7 (1.6%)	13 (81.2%) 3 (18.8%) 0 (0.0%)	0.601
# of previous lines of therapies	>3	243 (54.1%)	232 (53.6%)	11 (68.8%)	0.232
Previous autologous SCT	Yes	158 (35.2%)	153 (35.3%)	5 (31.2%)	0.737
Product infused	Axi-cel	69 (15.4%)	65 (15.0%)	4 (25.0%)	0.412
	Tisa-cel	189 (42.1%)	182 (42.0%)	7 (43.7%)	
	Liso-cel	32 (7.1%)	32 (7.4%)	0 (0.0%)	
	Brexu-cel	34 (7.6%)	32 (7.4%)	2 (12.5%)	
	lde-cel	67 (14.9%)	64 (14.8%)	3 (18.8%)	
	Cilta-cel	58 (12.9%)	58 (13.4%)	0 (0.0%)	
Previous neoplasm	Yes	75 (16.7%)	70 (16.2%)	5 (31.2%)	0.112

NHL, non-Hodgkin lymphoma; MM, multiple myeloma; ALL, acute lymphoblastic leukemia

9th POSTGRADUATE

Ghilardi et al. Nature Med. 2024;30:984–989.

Types and risk of secondary cancers after CAR-T: the UPenn experience

9th POSTGRADUATE

The projected 5-year cumulative incidence is 15.2% for solid and 2.3% for hematological malignancies

Secondary cancers after CAR-T: the UPenn experience

Among 16 second cancers observed after commercial CAR-T, a single case of T-cell lymphoma occurred 3 months after infusion of axicabtagene ciloleucel for B-cell 'grey zone' lymphoma

Pathologic diagnosis: CD8+ peripheral T-cell lymphoma NOS with cytotoxic phenotype

9th POSTGRADUATE

- <u>Molecular studies</u>: JAK3 variant of uncertain significance, (p.D640Efs*30) with VAF 11%, not present in the B-cell lymphoma, was detected; a clonal TRG rearrangement was identified in the T-cell but not the original B-cell lymphoma.
- qPCR revealed very low CAR transgene copies (8 copies/µg DNA or approximately 0.005% of cells), suggesting blood contamination or infiltrating CAR-T cells rather than CAR+ malignant T-cells.
- In diagnostic T-cell lymphoma tissue, a TRG clone represented approximately 20% of total TRG sequencing reads.
- This TRG clonotype was also detected reproducibly at very low copy number in pre-CAR T blood (less than 0.01% of total TRG sequencing reads; confidence >99% at 1 × 10–3)

Retroviral DNA

Undetected

Detected

Secondary cancers after CAR-T: the Stanford experience

- 724 patients received T-cell therapies at Stanford between 2016-2023
- Second primary malignancies were observed in 25 cases (3.5%)
 - 11 solid tumors (44% of SPM; 1.5% of all pts)
 - 14 hematologic, 13 MDS/AML, 1 TCL (56% SPM; 1.9% all)
- Lethal T-cell lymphoma was identified in a single patient who received axi-cel for diffuse large B-cell lymphoma
- Both lymphomas were deeply profiled •

9th POSTGRADUATE

- each had molecularly distinct immunophenotypes and genomic profiles, but both were positive for EBV and associated with DNMT3A and TET2 mutant clonal hematopoiesis
- No evidence of oncogenic retroviral integration ٠ found using of multiple techniques.

Detected Mutation

TET2 del/wt + DNMT3A mut/wt

• TET2 del/mut + DNMT3A mut/wt

TET2 del/wt

• WT

UMAP1

6723 Cells from index patient

T cell

Myeloid 1

Myeloid 2

Myeloid 3

Florence, March 20-21, 2025

Secondary cancers after CAR-T: FDA Adverse Events Reporting System (FAERS) database

Elsallab et al. Blood 2024;143(20):2099-2105.

Florence,

March 20-21, 2025

326 SPMs in 5,517 (6.0%) patients from 18 clinical trials and 7 real-world studies

• hematologic malignancies (37%), solid tumors (27%), non-melanoma skin cancers (16%), T-cell malignancies (1.5%)

Overall SPM point estimate was 6.0% (95% CI, 4.8%-7.4%) at 21.7 months median follow-up.

• point estimate for T-cell SPM across the entire population was 0.09% (95% CI, 0.04%–0.2%)

Data from 4 randomized trials evaluable for SPMs emergence after CAR-T

- BCMA-CART: KarMMa-3 (ide-cel) and CARTITUDE-4 (cilta-cel) 1,253 patients
- CD19-CART: ZUMA-7 (axi-cel) and TRANSFORM (liso-cel)

9th POSTGRADUATE

- Pooled SPM frequency in randomized CAR-T arms was 5.0% (95% CI 3.6-6.9%).
- Pooled SPM frequency in randomized SOC arms was 4.9% (95% CI 3.4-6.9%).

Tix et al Clin Cancer Res. 2024;PMID: 39256908.

Aggressive CAR+ T-cell lymphoma after CAR-T: Contribution of clonal hematopoiesis

Clinical/laboratory course:

Analysis: Immunophenotype of CAR+ T-cell lymphoma: CD19-CAR+ double negative (CD4- CD8-) peripheral T-cell lymphoma NOS with co-expression of CD2, CD3, CD5, CD7, CD38, granzyme B, CD26, CD28, HLA-DR, and TCR α/β

Combination CD3 IHC and In Situ Hybridization

Kobbe et al. Engl J Med 2024;391:1217-26.

Aggressive T-cell lymphoma after CAR-T

Analysis (continued):

• Genomic characterization:

9th POSTGRADUATE

• T-cell receptor sequencing and clonality analysis:

Target	Sequence	ASCT apheresis	CAR T-cell apheresis	Blood	Blood	Bone Marrow	Blood
1	Day	-217	-140	7	14	51	56
TRB	V27 -2/17/-0 J2-7	0.00%	0.00%	0.00%	0.13%	80.56%	91.53%
TRB	V20-1 -0/15/-7 J2-2	0.58%	0.41%	5.54%	4.23%	2.04%	0.48%
TRB	V20-1 -6/11/-5 J2-1	0.49%	0.30%	6.40%	5.53%	0.50%	0.12%
TRB	V20-1 -3/11/-5 J1-3	1.73%	40.71%	3.99%	5.76%	0.21%	0.48%
TRB	V11-2 -5/11/-1 J1-1	0.81%	6.44%	0.21%	0.26%	0.00%	0.00%
TRG	V10 -7/3/-8 JP1	0.21%	0.20%	0.36%	0.54%	54.62%	54.85%
TRG	V2 -0/4/-6 JP2	0.00%	0.00%	0.00%	0.15%	32.63%	36.40%
TRG	V3 -3/9/-2 J1=J2	2.83%	4.14%	12.66%	15.48%	0.67%	0.33%
TRG	V4 -4/5/-3 J1=J2	1.48%	2.69%	8.31%	10.80%	0.44%	0.08%
TRG	V2 -2/6/-4 JP2	1.04%	8.56%	3.31%	2.63%	0.39%	0.04%
TRG	V8 -1/2/-2 JP2	1.10%	8.82%	4.43%	4.11%	0.28%	0.08%

IS distribution across chromosomes

Chromosome

9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

• Vector integration site analysis:

Conclusion: Evidence suggests that clonal hematopoiesis contributed to lymphomagenesis

Kobbe et al. Engl J Med 2024;391:1217-26.

Fraction (%)

S

5 6

8

Bidirectional increased risk of B-cell lymphoma and T-cell lymphoma: SEER registry data (2000 – 2016)

<u>Method</u>

9th POSTGRADUATE

- Previously diagnosed BCL or TCL cohorts were followed over time to compare the observed incidence rate of subsequent lymphoma diagnoses to the number of lymphomas expected for the general population
- Expected new cases of lymphoma per year (both genders, age-adjusted): 18.6 per 100,000 (~ 0.02% per year)

• Standardized Incidence Ratio (SIR) = $\frac{\text{observed cases}}{1}$

expected cases

Sample size

First Lymphoma diagnosis (2000-2016)

- Total patients diagnosed (N = 312,225)
- B-cell lymphoma (n = 288,478)
- T-cell lymphoma (n = 23,747)

<u>Results</u>

TCL following BCL: SIR = 4.7 (95%CI 4.2-5.2) BCL following TCL: SIR = 4.7 (95%CI 5 4.1-5.2)

PTCL-NOS following HL: SIR = 27.5 HL following PTCL-NOS: SIR = 31.6

AITL following DLBCL: SIR = 9.7 DLBCL following AITL: SIR = 15.3

SIRs were <5 for of TCL with CLL and FL

	Ri	sk of TCL fo	llowing	BCL
	No. of BCL patients	Observed no. of TCLs	SIR	(95% CI)
Total, N	288478	354	4.7	(4.2, 5.2)
	Ris	k of BCL foll	owing	TCL
	Ris No. of TCL patients	k of BCL foll Observed no. of BCLs	owing SIR	TCL (95% CI)

- increased risks were strongest within the first year following diagnosis but remained elevated even at <u>></u> 5 years
- ~5X higher risk than the general population is ~0.1% vs 0.02% per year

BCL, B-cell lymphoma; TCL, T-cell lymphoma; PTCL-NOS, peripheral T-cell lymphoma not otherwise specified; HL, Hodgkin lymphoma; AILT, angioimmunoblastic T-cell lymphoma; DLBCL, diffuse large B-cell lymphoma

Chihara et al. Blood 2021;138(9): 785-789.

Summary

- SPMs have been reported after CAR-T immunotherapy in ~5% of patients
- The incidence of SPMs after CAR-T does not appear higher than expected

 At 30 years from primary cancer diagnosis, the cumulative incidence of all second cancers is 20.5% (95% CI 19.1%–21.8%)¹
- T-cell lymphomas as SPMs are rare after CAR-T; reported cases of CAR+ TCLs are very limited
- Mechanisms of T-cell lymphoma development as a SPM may involve antecedent clonal hematopoiesis
- T-cell lymphoma with an integrated vector transgene was not observed in more than 1,500 CAR-T patients analyzed in depth at Penn and Stanford
- A baseline bidirectional risk between B-cell and T-cell lymphomas exists; risk of T-cell after B-cell lymphoma ~5X higher than the general population (0.1% vs 0.02%)
- Caution is warranted if underlying cancer susceptibility mutations, such as clonal hematopoiesis, or other drivers of lymphoproliferation, such as EBV, are present
- Remember the "Immortal Time Bias", *i.e.*, patients can only develop SPM malignancies if they do not first die of their primary cancer

9th POSTGRADUATE

Risk of Second Primary Tumors and T-cell lymphoma after CAR-T cell therapy

